Team Updates

Our project consists of diving lenses made to monitor the underwater bed

It incorporates sensors to take into account the increase in water with the data provided by NASA and with the current results of the seabed measurement.

Data consulted:

https://vesl.jpl.nasa.gov/sea-level/slr-gravity/

https://climate.nasa.gov/vital-signs/sea-level/

Similarly, we collect information and digital images in our own database.

Based on local data on the weather report in case of possible storms and how this affects the significant increase in the sea.

  • Get to keep the population informed through social networks, since a large number of people will use it.
  • It incorporates own data collected and images to be consulted by any interested person.
  • It incorporates own data collected and images to be consulted by any interested person.

WHY LIMIT TO JUST ONE PROBLEM?


GIIA can be incorporated into other situations, stories such as rescue teams as it has a camera and facial recognition that are stored in another specialized database. It also notifies the rescuer of the danger.

We also incorporate them for blind people who with soft vibration motors warn the person of obstacles.

kienermaldonadoKiener Francisco Maldonado Zamora
 Ide 3d model for diving goggles incorporating sensors.
Ide 3d model for diving goggles incorporating sensors.
kienermaldonadoKiener Francisco Maldonado Zamora
# import the necessary packages
from picamera.array import PiRGBArray
from picamera import PiCamera
import time
import cv2
# initialize the camera and grab a reference to the raw camera capture
camera = PiCamera()
camera.resolution = (320, 240)
camera.framerate = 12.0
rawCapture = PiRGBArray(camera, size=(320, 240))
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output.avi', fourcc, 8, (320,240))
# allow the camera to warmup
time.sleep(0.1)
# capture frames from the camera
for frame in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
# grab the raw NumPy array representing the image, then initialize the timestamp
# and occupied/unoccupied text
image = frame.array
#Load a cascade file for detecting faces
face_cascade = cv2.CascadeClassifier('/home/pi/haarcascade_frontalface_default.xml')
#face_cascade = cv2.CascadeClassifier('/home/pi/project/faces.xml')
#convert to grayscale
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
#Look for faces in the image using the loaded cascade file
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
#Draw a rectangle around every found face
for (x,y,w,h) in faces:
cv2.rectangle(image,(x,y),(x+w,y+h),(255,255,0),2)
# show the frame
out.write(image)
cv2.imshow("Frame", image)
key = cv2.waitKey(1) & 0xFF
# clear the stream in preparation for the next frame
rawCapture.truncate(0)
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
view raw faceqi hosted with ❤ by GitHub
// Pines utilizados
#define TRIGGER 5
#define ECHO 6
#define BUZZER 9
// Constantes
const float sonido = 34300.0; // Velocidad del sonido en cm/s
const float umbral1 = 175.0;
const float umbral3 = 50.0;
void setup() {
// Iniciamos el monitor serie
Serial.begin(9600);
// Encendido LED CIRCUITO CONTINUO
pinMode (13,OUTPUT);
// Modo entrada/salida de los pines
pinMode(ECHO, INPUT);
pinMode(TRIGGER, OUTPUT);
pinMode(BUZZER, OUTPUT);
}
void loop() {
//SALIDA ANALOGICA LDR
if (analogRead(0) > 150)
{//CONVERCION DIGITAL
digitalWrite(13,HIGH);
}
else{//REGRESA DATOS
digitalWrite(13,LOW);
}
// Preparamos el sensor de ultrasonidos
iniciarTrigger();
// Obtenemos la distancia
float distancia = calcularDistancia();
if (distancia < umbral1)
{
alertas(distancia);
}
}
void alertas(float distancia)
{
if (distancia < umbral1 )
{
tone(BUZZER, 2000, 150);
}
else if (distancia <= umbral3)
{
tone(BUZZER, 4000, 75);
}
}
float calcularDistancia()
{
unsigned long tiempo = pulseIn(ECHO, HIGH);
float distancia = tiempo * 0.000001 * sonido / 2.0;
Serial.print(distancia);
Serial.print("cm");
Serial.println();
delay(250);
return distancia;
}
void iniciarTrigger()
{
digitalWrite(TRIGGER, LOW);
delayMicroseconds(0.5);
digitalWrite(TRIGGER, HIGH);
delayMicroseconds(2);
digitalWrite(TRIGGER, LOW);
}
view raw sensor ultra hosted with ❤ by GitHub
kienermaldonadoKiener Francisco Maldonado Zamora
Un dibujo presentando el proyecto GIIA en el cual consiste para poder detectar objetos bajo el agua para el personal que está haciendo uso para un rescate. #UMG #Peten #gt #SpaceAppsChanllege
Un dibujo presentando el proyecto GIIA en el cual consiste para poder detectar objetos bajo el agua para el personal que está haciendo uso para un rescate. #UMG #Peten #gt #SpaceAppsChanllege
kienermaldonadoKiener Francisco Maldonado Zamora
Nombre del proyecto e integrantes de GIIA. #UMG #Peten #gt #SpaceAppsChallenge
Nombre del proyecto e integrantes de GIIA. #UMG #Peten #gt #SpaceAppsChallenge
kienermaldonadoKiener Francisco Maldonado Zamora
Proceso del proyecto GIIA. #UMG #Peten #gt #SpaceApps
Proceso del proyecto GIIA. #UMG #Peten #gt #SpaceApps
kienermaldonadoKiener Francisco Maldonado Zamora