
Carbon is the foundation for food, structure, and life on Earth. One major constituent of carbon, carbon dioxide, is the air we respire and the air we produce through burning fossil fuel. In recent decades, carbon dioxide is the major factor to this changing environment. Many scientific reports show the high level of CO2 we have now is less likely caused by natural events but by anthropogenic ones. One reason is because the level has far exceeded that of ancient records in the last 8 million years. In order to reduce CO2 in the air, many movement and methods have been provided. One of them is carbon trade. Carbon trade is to give a price to activities and compensate with products that can reduce carbon dioxide (amount of the emitted carbon dioxide through activities is also definedas “carbon footprint”). However, pricing on activities or products can potentially fall into the fallacy in producing more carbon if the pricing market becomes unfair. Inspired by Sustainable Development Goals (SDGs) #15 Life on Land, we want to value the nature of terrestrial region in distinction to our present currency system. We construct a new value system, Carbon coin currency, to match with the goal.
碳是地球上最重要的元素之一, 他是食物, 結構, 生命的基礎. 其中一個由碳構成的重要分子, 二氧化碳, 是我們呼吸排出的, 也是燃燒化石燃料的產物. 在近幾十年間, 二氧化碳已成為改變氣候環境的重要因子. 很多科學報告顯示現在空氣中二氧化碳的濃度中, 有很大一部份並不是來自自然因素而是人為影響. 其中一個理由是過去八百萬年之間的大氣濃度都沒有如現在這麼高的濃度. 為了降低二氧化碳濃度, 大家集思廣益想了很多方法, 其中一個即是碳交易. 碳交易是針對任何活動都評量造成的碳釋出(或可稱為碳足跡), 並購買能夠減碳的方式來作為補償. 雖然針對活動或物產進行評價碳價值的作法可能導致反效果, 例如當評價系統不公平的時候就購買減碳的量, 卻沒有中和碳排放, 反而變相鼓勵更多消耗. 我們受到永續發展指標“#15-地上的生命”的啟發, 我們希望能增加自然的評價, 去區分現有的貨幣制度. 我們衡量農業活動中的碳循環, 以碳量來定義新的貨幣系統 (碳幣Carboin), 希望能藉此滿足這項指標.
In an effort to highlight the importance of plants for carbon fixation and the feedback some cultivation activities may cause to the environment, we design Earth Chicken (as interesting farming in mandrain) game and introduce currencies for carbon (Carboin, $C) and economical trading (capital profits, $P). We estimate the impact of the above activities with carbon budget partly on several scientific reports. Two scientific models are: one tights together growth of crops with its consumption for water and nutrients (GAEZ) and another model provides a larger view on ecosystems and show tree's dependency on environment (ORCHIDEE). Many environmental factors constrain plant growth, such as temperature, water, light, and nutrients. We know that natural ecosystem provides various environments for diverse plants and animals, such as ecoregions. When you log onto the current view of the modern Earth, you will see information extracted and modeled from satellites of NASA (GLDAS-NOAH025). You will begin to observe how different it can be within a few years! Now, you are on a mission to earn profits on both sides while reducing the environmental stress across these years. As environment changes, the productivity of the crop will change! Be careful what you are going to encounter throughout those years. Within 15 minute of time, what crops can gain more profit? Moreover, as the crop and tree grows, it changes the environment and help the land productivity to increase or decrease. Combining two mechanism mentioned above, the extreme weather and feedback of the plants, will you find a balance of accumulate Carboin and profit and help the Earth environment more sustainable?
為了能夠讓玩家能更理解植物固碳的功能以及買賣作物當中對環境做的影響, 我們設計了這個地球墾趣遊戲, 以種植植物來獲取碳幣($C)與賣出獲取金錢($P) 的活動, 套入各種活動引起的環境變異, 來理解這兩種貨幣系統的特色與糾葛. 遊戲中引用的兩種科學估算模式一是由聯合國農糧署針對經濟作物所作的估算 (GAEZ), 另者由科學家發表的生態系統對養分的使用效率以及初級生產量進行的估算(ORCHIDEE). 影響植物生長的重要環境因素包括氣溫, 水環境, 陽光, 與養分. 同時我們也知道原始氣候條件已提供生態系統的多樣性, 例如植物群系(Ecoregions). 當你登入這個遊戲, 你會先看到從衛星(NASA-GLDAS-NOAH025)實際觀測與推估出的狀況如何. 你會開始注意到遊戲的15分鐘內, 環境狀況在這9年的變化! 不僅是這些環境會改變作物的生長, 作物也會回饋溫濕度變化給環境, 當兩者達成極限環境, 你的作物將受到嚴重影響!現在, 你有任務了, 要怎麼同時積累碳幣與貨幣呢? 碳幣可以拯救地球嗎?
Sources package to download:
Vuichard, N., Messina, P., Luyssaert, S., Guenet, B., Zaehle, S., Ghattas, J., Bastrikov, V., and Peylin, P. 2018 Accounting for Carbon and Nitrogen interactions in the Global Terrestrial Ecosystem Model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-261, in review.
Fischer, Günther & Nachtergaele, F. & Prieler, Sylvia & Teixeira, Edmar & Toth, Geza & Velthuizen, Harrij & Verelst, Luc & Wiberg, David. 2012 Global Agro‐Ecological Zones (GAEZ v3.0) - Model Documentation.
Bailey, R.G. Environmental Management (1983) 7: 365. https://doi.org/10.1007/BF01866919